F-LL100 雷达一体式流 量计使用说明书	文档版本	密级
	V1. 0. 3	
里们使用奶奶门	产品名称: 雷达一体式流量计	共 20 页

雷达一体式流量计使用说明书

此说明书适用于下列型号产品:

型号	产品类别
F-LL100-77G	雷达一体式流量计
F-LL100-77G-L	雷达一体式流量计

客户热线: 400-8838 -199 电话: +86-592-6300320 传真: +86-592-5912735 网址: www.four-faith.com

地址: 厦门集美软件园三期 A06 栋 11 层

文档修订记录

日期	版本	说明	作者
2021-06-22	V1. 0. 0	初始版本	Feng
2021-07-22	V1. 0. 1	审核版本	Feng
2021-09-28	V1. 0. 2	更新技术参数	Feng
2021-12-29	V1. 0. 3	DR3 阶段更新	Feng

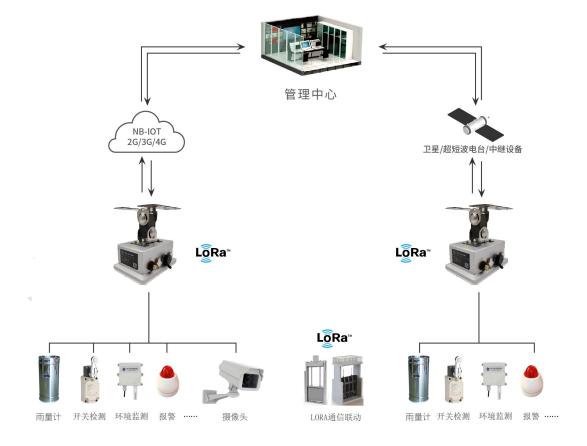
著作权声明

本文档所载的所有材料或内容受版权法的保护,所有版权由厦门四信拥有,但注明引用 其他方的内容除外。未经四信公司书面许可,任何人不得将本文档上的任何内容以任何方式 进行复制、经销、翻印、连接、传送等任何商业目的的使用,但对于非商业目的的、个人使 用的下载或打印(条件是不得修改,且须保留该材料中的版权说明或其他所有权的说明)除 外。

商标声明

产品外形图

目 录


第-	一章 产品简介	6
	1.1 产品概述	6
	1.2 产品特点	7
	1.3 产品规格	8
第二	二章 安装	11
	2.1 概述	11
	2.2 开箱	11
	2.3 安装	11
第三	三章 RTU 功能说明	16
	3.1 通信功能	16
	3.2工作模式	16
	3.3 采集功能	
	3.4 设备管理	16
	3.5 对外供电	17
	3.6 远程管理	17
	3.7报警功能	17
	3.8 本地存储采集数据	
第四	四章 Modbus 协议说明	
	4.1 通信接口说明	
	4.2 基本命令格式	18
	4.3 寄存器说明	18
	4.4 修改设备地址	20

第一章 产品简介

1.1 产品概述

雷达一体式流量计是一款采用单板雷达天线设计,同时支持水位、流速测量,流量算法和 RTU 采集通信功能的产品。产品水位、流速共用一块基于高频段的毫米波雷达天线板,采用数字波束成型技术,可实现天线波束在不同方位的扫描,从而实现水位和流速精准测量。结合四信现有成熟稳定的 RTU 采集通信技术,具备 2G/3G/4G 通信,蓝牙配置,数据采集、预警,电源管理等特点,可以做到一板测量,设备体积小巧、盲区小、功耗低、安装方便等优点。

1.2 产品特点

遵循标准

◆ GB/T 15966-2017《水文仪器基本参数及通用技术条件》

符合规约(注: 需具有 RTU 通信模块)

◆ SL651-2014《水文监测数据通信规约》

主要功能

- ◆ 雷达水位、流速精准测量,完善流速计量算法
- ◆ 支持水文协议上报
- ◆ 支持 RTU 功能,可采集、控制、联动第三方传感设备
- ◆ 支持 2G/3G/4G 等多种通信方式
- ◆ 本地存储水位、流速、流量和其他数据
- ◆ 实现对电源电压、设备状态的自检,分析计量故障等信息,及时发现计量异常
- ◆ 低功耗设计, 待机功耗低于 1mA
- ◆ 支持蓝牙配置、查询和调试
- ◆ 支持远程升级功能
- ◆ 防护等级 IP67 以上,体积小巧、安装方便

稳定可靠

- ◆ 内置看门狗,保证系统长时间稳定运行
- ◆ 采用完备的防掉线机制,保证终端永远在线
- ◆ RS232/RS485 接口内置 15KV ESD 保护
- ◆ SIM/UIM 卡接口内置 15KV ESD 保护
- ◆ 电源接口内置反相保护和过压保护
- ◆ 具有防雷保护

标准易用

- ◆ 阵列天线,水位流速一体设计,体积小,重量轻,安装方便
- ◆ 采用标准接口,特别适合于工业现场应用
- ◆ 方便的系统配置和维护接口
- ◆ 支持串口和远程软件升级
- ◆ 提供丰富的接口,有 RS485、RS232、模拟量输入、开关量输入、雨量计及受控电源输出等接口

1.3 产品规格

工作参数

项 目	内 容
供电电压	DC6~36V
功耗	自报模式:工作电流<30mA
切和	兼容模式:工作电流<55mA
工作温度	-35℃~75℃
存储温度	-40°C∼80°C
湿度	95% RH 无凝露状态
保护等级	IP67以上
通信方式	RS-232、RS485、4~20mA(可选), 2G/3G/4G,BT,LoRa(可选)

测量参数

155 日		ж	क्रीच		
项 目		内	容		
	水位指标				
测距量程	10m				
测距精度	±5 mm				
测距分辨力	1 mm				
盲区	≤20cm				
雷达频率	77GHz				
波速角	8°				
	流速指标				
测速范围	$0.1^{\sim}15 \text{m/s}$				
测速精度	\pm 1%FS				
测速分辨力	0.01m/s				
俯仰角范围	27°				
角度精度	±1°				
角度分辨率	0.1°				
雷达频率	77GHz				
天线波速角度	10°				

4G 模块参数 (RTU 参数)

项目	内 容
	LTE FDD: B1, B3, B5, B8
	LTE TDD: B38, B39, B40, B41
	TD-SCDMA: B34, B39
标准及频段	UMTS: B1, B8
	EV-DO: BCO
	CDMA 1x: BCO
	GSM/GPRS/EDGE: 900/1800 MHz
无线速率	GPRS: Max 85.6Kbps(DL) / Max 85.6Kbps(UL)

	CDMA: Max 3.1Mbps(DL)/Max 1.8Mbps(UL)
	WCDMA: DC-HSPA+, Max 42Mbps(DL)/Max 5.76Mbps(UL)
	TD-SCDMA: Max 4.2Mbps(DL)/Max 2.2Mbps(UL)
	FDD-LTE: non-CA cat4, Max 150Mbps(DL)/Max 50Mbps(UL)
	TDD-LTE: non-CA cat4 ,Max 130Mbps(DL)/Max 35Mbps(UL)
	GSM850: +33dBm (Power Class 4)
	EGSM900: +33dBm (Power Class 4)
	DCS1800: +30dBm (Power Class 1)
	PCS1900: +30dBm (Power Class 1)
	EDGE 850MHz: +27dBm (Power Class E2)
~L → 555 /57	EDGE 900MHz: +27dBm (Power Class E2)
功率等级	EDGE1800MHz: +26dBm (Power Class E2)
	EDGE1900MHz: +26dBm (Power Class E2)
	TD-SCDMA: +23dBm (Power Class 3)
	CDMA 1X/EVDO: +23dBm (Power Class 3)
	UMTS: +23dBm (Power Class 3)
	LTE: +23dBm(Power Class 3)
接收灵敏度	<-109dBm

BLE 参数

项 目	内容
工作频段	2.4GHz, ISM 频段
蓝牙版本	蓝牙 V4. 2
通信速率	8KB/S (Android) 6KB/S (IOS)
发射功率	7dBm
接收灵敏度	-92dB at 0.1% BER

硬件参数

项 目	内 容
CPU	工业级 32 位通信处理器
FLASH	512KB
SRAM	256KB
SPI FLASH	16MB

接口类型

项目	内 容
串口	串口参数如下: ・ 数据位: 8 位 ・ 停止位: 1 位 ・ 校验: 无校验 ・ 波特率: 2400、4800、9600、19200、38400、57600、115200bps
天线接口	标准 SMA 阴头天线接口,特性阻抗 50 欧

SIM/UIM 卡接口	标准的抽屉式用户卡接口,可自适应 1.8V 和 3V SIM/UIM 卡
	1路 RS485 通讯接口,默认波特率 115200bps,内置 15KV ESD 保护
应用接口	1路 RS232 调试接口,内置 15KV ESD 保护
(流量计标配)	1路 4-20mA 电流信号输出(可选)
	1路电源输入接口
	1路 RS485 通讯接口,内置 15KV ESD 保护
	1 路受控电源输出接口(与输入电源电压一致)
	1 路雨量计接口
应用接口	1路模拟量输入接口(支持 4-20mA 电流信号输入,可选 0-5V 电压信
(选配 RTU 模块)	号输入)
	1路开关量输入接口
	逻辑 0: 湿节点(0-3VDC)或干节点导通
	逻辑 1: 湿节点(5-30VDC)或干节点断开

外观参数

71.702 274	
项 目	内 容
产品尺寸	120mm(L) *80mm(W) *58mm(H)
支架尺寸	61mm (L) *55mm (W) *60mm (H)
重量	约 0. 63Kg
外壳材料	铝合金

第二章 安装

2.1 概述

设备必须正确安装方可达到设计的功能,通常设备的安装必须在本公司认可合格的工程 师指导下进行。

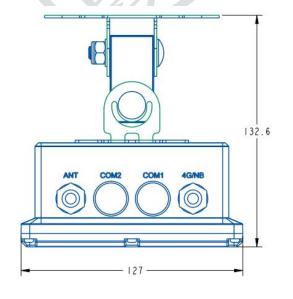
2.2 开箱

为了安全运输,设备通常需要合理的包装,当您开箱时请保管好包装材料,以便日后需 要转运时使用。

设备包括下列组成部分:

标配部分:

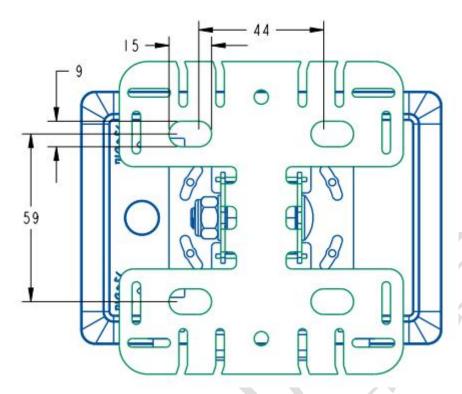
- ◆ 设备主机 1台
- ◆ 支架1个,半圆头双垫片螺丝5个
- ♦ 简易说明书 1 张
- ◆ 5米 COM1 航空插头连接线 1条
- ♦ ANT 天线 1 根
- ◆ 保修卡和合格证


选配部分:

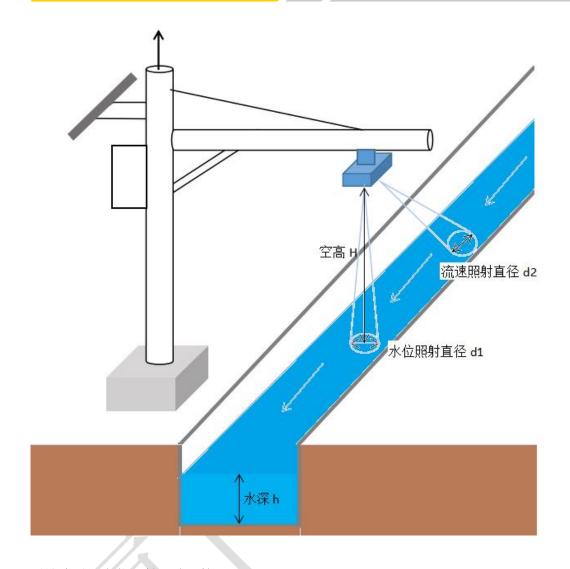
- ◆ 5米 COM2 航空插头连接线 1条
- ◆ 10 米 COM1 航空插头连接线 1 条
- ♦ 10 米 COM2 航空插头连接线 1 条
- ◆ 4G 天线 1 根

2.3 安装

外形尺寸:

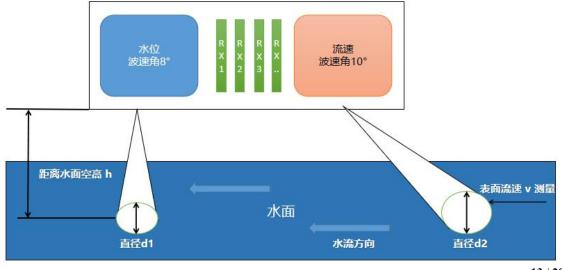

设备和安装支架采用金属结构设计,具体的尺寸参见下图。(单位:mm)

11 / 20



安装要求:

- (1) 建议采用立杆式安装方式,以抱箍的方式固定在横杆上。
- (2) 安装高度不超过水位量程下使用。
- (3) 雷达流速安装支持逆向和顺向水流方向2种。
- (4) 尽量安装在渠道的中间,避免水位下降打到岸边造成干扰。
- (5) 在安装雷达探头时,应当尽量保持水平,与水面平行,避免会造成误差。安装时采用 APP 进行水平角度纠正。
- (6) 雷达安装的地点处,应该尽量避免漂浮物或其他会影响雷达波的物体。
- (7) 为了得到较高精度,雷达一体式流量计安装在无巨大块石阻水,无巨大漩涡、乱流等现象。
- (8) 安装环境仅适用在灌区渠道,波浪高度不大于 10cm 的地方
- (9) 因雷达水位测量存在 8°的发射叫波速角,雷达流速测量存在 10°的发射叫波速角,为了不行渠岸对水位测量造成影响,对渠道的宽度有一定的要求,见下方雷达一体式流量计安装照射区域计算公式表。


站点安装示意图:

雷达流量计安装照射区域计算:

雷达水位测量存在 8°的发射叫波速角,而雷达流速测量存在 10°的发射叫波速角,可 以通过如下图中的公式简单的换算水位的照射区域,流速的照射区域和大体的照射位置。

13 / 20

名称	长度(单位:米)
雷达水位 d1	0.140Н
雷达流速 d2	0. 175Н
流速照射区域距离L	L≈0.577H

注:表中的D1为雷达水位照射直径,A表示雷达流速的长椭圆直径,B表示雷达流速的短 椭圆直径,L是流速照射面距离雷达安装位置的距离。

安装高度对应波束照射区域的渠底宽度长度换算举例表

AND STREET)*)+###pp0 ()	> >
安装高度H(m)			流速照射区域L(m)
2	0.18	0.35	≈1.15
3	0.42	0.53	≈1.73
4	0.56	0.70	≈2.32
5	0.70	0.88	≈2 . 88
6	0.84	1.05	≈3.46
7	0. 98	1.23	≈4 . 04
8	1. 12	1.40	≈4.61
9	1.26	1.58	≈5.19
10	1.40	1.75	≈5.77

天线及 SIM 卡安装:

设备天线接口为SMA阴头插座。将配套天线的SMA阳头旋到设备天线接口上,并确 保旋紧, 以免影响信号质量。

安装或取出SIM/UIM 卡时, 先用尖状物轻轻顶住退卡钮(SIM/UIM 左侧的圆形小圆点), SIM/UIM 卡套即可弹出。安装SIM/UIM 卡时,先将SIM/UIM 卡放入卡套,并确保SIM/UIM 卡的金属接触面朝外,再将 SIM/UIM 卡套插入抽屉中,并确保插到位。

接口信号定义说明:

COM1 航空接头

颜 色	定义
红色	电源正极
黑色	电源地
绿色	4-20mA 电流信号输出
黄色	GND
白色	RS232-TXD
棕色	RS232-RXD
蓝色	GND
橙色	RS485-B(-)
灰色(紫色)	RS485-A (+)

COM2 航空接头

颜 色	定义
红色	受控电源正极
黑色	受控电源地
绿色	模拟量输入接口,支持 4-20mA 电流信号输入,可 选 0-5V 电压信号输入
黄色	模拟信号地
白色	1 路开关量输入接口 逻辑 0: 湿节点 0-3VDC,或干节点导通 逻辑 1: 湿节点 5-30VDC,或干节点断开
棕色	雨量计接口
蓝色	数字信号地
橙色	RS485-B(-)
灰色(紫色)	RS485-A(+)

天线接口

定义	说明
ANT	LORA/BT 模块天线
4G/NB (选配)	4G/NB 模块天线

第三章 RTU 功能说明

注: 该功能为选配功能

3.1 通信功能

支持GPRS、短消息两种通讯方式; GPRS最多支持4个中心。

3.2 工作模式

支持兼容、自报两种工作模式:

a) 自报工作模式

事件触发(被测要素值发生一定变化)时,遥测站主动发送数据;

定时触发时,遥测站应按规定的时间主动上报发送数据。自报工作模式下RTU在整点上 报和预警加报时上线,完成数据传输后又自动下线。自报主要应用于短时间通讯、长时间待 机,因此在功耗上远远低于兼容式工作模式。自报模式下GPRS通讯模块处于休眠状态,可以 通过短信进行远程修改配置参数。

b)兼容工作模式

表示同时包括查询和自报两种工作模式。

兼容式工作模式下RTU一开机启动就会自动连接服务中心,并且一直保持在线;

如果出现网络故障RTU设备就会自动重新连接。此模式下,管理平台可以进行召测等操 作。

由于无线通信模块是一个比较耗电的单元,在自报模式下,RTU只在小时报或加报报时 候才会上线,否则会关闭其电源。在兼容模式下则会一直保持在线,此时功耗会较高。

3.3 采集功能

RTU 目前支持 RS485 传感器、模拟量信号传感器的数据采集。

定时采集方式即从整点时刻开始按设置的时间采集并记录数据,主要包括水位、流速、 流量、电源电压等数据。

3.4 设备管理

设备管理包括终端参数管理、程序升级、校时、历史数据查询等。管理方法括本地串口, 蓝牙连接。

Fax: 0592-5912735

选配RTU功能时支持远程连接等方法。

3.5 对外供电

设备可对外提供直流电源,为传感器供电。

3.6 远程管理

RTU的远程管理功能是通过其配套的管理平台来实现的。

管理平台可以实现数据接收、终端参数管理、程序升级、校时、历史数据 查询、召测、电压告警、短信接收等功能。

RTU 支持扩展协议的远程参数设置,具体设置请参考管理平台"参数配置"。

RTU 可以远程升级应用程序,支持 TCP 与 UDP 方式,首先把需要升级的应用软件(版本号要高于当前的软件版本号)放在中心软件的安装目录下,其次需要配置远程升级的参数(需要升级的应用软件所在的服务器的 IP 与端口号),支持扩展协议配置与短信配置。

具体参数配置请参考程序升级的"远程升级"。

3.7报警功能

当采集值达到设定的加报条件后, RTU 会按设置的报警时间间隔上报给管理平台。

3.8 本地存储采集数据

RTU会将所有数据都记录到本地固态存储器中,按照目前的数据格式,至少可以存储10万条以上数据。

历史数据可以通过RTU配置管理工具本地下载查看,需要PC通过配置RS232串口接入RTU设备,然后通过配置软件将数据读取出来,作为Excel表格文件保存到PC中,以并查看详细的雨量、水位、流速、流量等历史数据。

第四章 Modbus 协议说明

4.1 通信接口说明

- 1)硬件采用RS485,主从式半双工通信,按照标准的MODBUS协议进行设置,寄存器的长度为2个字节。
- 2)数据帧10位,1个起始位,8个数据位,1个停止位,无校验。波特率:9600、19200、38400、57600、115200(默认)
- 3) 主机需获取终端地址之后才能和设备进行数据通信

4.2 基本命令格式

一般格式命令帧

		1				
从站地址	功能码	数据				校验
1 Byte	1 Byte					
1 Dyte	1 byte	数据起始寄	数据起始寄	数据寄存	数据寄存	CRC16
		存器高位	存器低位	器	器	2
		1 Byte	1 Byte	高位	低位	Bytes
				1 Byte	1 Byte	

从站地址字段

帧中的从站地址字段表示接收主站报文的从站地址,即从站ID。

功能码字段

功能码字段通知从站应执行何种功能。

功能码	名称	作用 (对于主站而言)
0x03	读取保持寄存器	获取雷达配置相关参数
0x04	读取输入寄存器	获取雷达相关参数(只读)
0x16	预置多个寄存器	预置雷达配置设置参数

注: 起始地址是指从哪一路雷达参数开始(编号从0开始),寄存器数是指读取几路雷达参数(每路4个字节)。应答帧中的数据是按上述要求读取的雷达参数。

4.3 寄存器说明

地址码	功能码	起始地址	读取寄存器	校验码	数据类型	意义
01	03	01 06	00 02	25 F6	Float	读取液位,单位 m
01	03	01 08	00 02	44 35	Float	读取空高,单位 m
01	03	01 OA	00 02	E5 F5	Float	读取瞬时流速,单位 m/s
01	03	01 OC	00 02	05 F4	Float	读取瞬时流量,单位 m³/s

01	03	00 1C	00 04	85 CF	Double	读取累计流量,单位 m³
01	03	02 00	00 01	85 B2	ВҮТЕ	读取设备地址,
						0-3
						0: 4800
01	03	02 01	00 01	D4 72	BYTE	1: 9600
						2: 19200
						3: 115200

注: 雷达产品出厂默认地址码为 01, 忘记地址可使用 00 03 02 01 00 0100 03 02 01 00 01 D5 A3 命令查询。

读单精度浮点类型(Float)寄存器示例

通道采集数据寄存器定义为 4 字节 32 位浮点数及 float 类型;存放顺序为 ABCD,高有效位在前;设备支持一次读取 24 通道所有数据;

示例格式

主机发送

01 04 01 00 00 0C F1 F3

地址 (BYTE)	功能 (BYTE)	寄存器首地址(WORD)	寄存器个数(WORD)	CRCL CRCH
01	04	0000	000C	FO OF

从机响应

01 04 18 00 00 00 00 00 00 00 00 00 00 00 00 41 D3 70 A4 00 00 00 00 00 00 00 11 1C

地址 (BYTE)	功能 (BYTE)	数据长度 (BYTE)	数据(ARR)	CRCL CRCH
01	04	0x18	•••	111C

说明:

最前面的4个十六进制数据为保留寄存器数据;

通道 1 十六进制数据为 00 00 00 00, 转换为单精度浮点数结果是 0.0;

通道2十六进制数据为00000000,转换为单精度浮点数结果是0.0;

通道3十六进制数据为41 D3 70 A4,转换为单精度浮点数结果是26.43;

通道4十六进制数据为00000000,转换为单精度浮点数结果是0.0;

通道 5 十六进制数据为 00 00 00 00, 转换为单精度浮点数结果是 0.0;

读双精度浮点 (Double) 类型寄存器

通道采集数据寄存器定义为 8 字节 64 位浮点数及 double 类型;存放顺序为 ABCDEFGH,高有效位在前;设备支持一次读取 24 通道所有数据;

示例格式

主机发送

01 04 00 00 00 0C F0 0F

地址 (BYTE)	功能(BYTE)	寄存器首地址(WORD)	寄存器个数(WORD)	CRCL CRCH
01	04	0000	000C	FO OF

从机响应

地址 (BYTE)	功能 (BYTE)	数据长度 (BYTE)	数据 (ARR)	CRCL CRCH
01	04	0x18	•••	97 7A

说明:

最前面的8个十六进制数据为保留寄存器数据;

通道 1 十六进制数据为 00 00 00 00 00 00 00 00 , 转换为双精度浮点数结果是 0.0; 通道 2 十六进制数据为 40 10 00 00 00 00 00 , 转换为双精度浮点数结果是 4.0;

4.4 修改设备地址

主机发送

01 06 02 00 00 02 09 B3

地址 (BYTE)	功能 (BYTE)	寄存器地址 (WORD)	寄存器数值(WORD)	CRCL CRCH
01	06	0200	00 02	09 B3

从机响应

与发送数据相同

说明:

把设备地址 0x01 改为 0x02, 下发后立即生效